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I.   INTRODUCTION 

In the second half of the 20th century, a considerable number of studies on fractional calculus were published in the 

engineering literature. In fact, fractional calculus has many applications in physics, mechanics, biology, electrical 

engineering, viscoelasticity, control theory, economics, and other fields [1-14]. There is no doubt that fractional calculus 

has become an exciting new mathematical method to solve different problems in mathematics, science, and engineering. 

However, the definition of fractional derivative is not unique. There are many useful definitions include Riemann-Liouville 

(R-L) fractional derivative, Caputo fractional derivative, Grunwald-Letnikov fractional derivative, Jumarie’s modified R-L 

fractional derivative [15-19]. Since Jumarie type of R-L fractional derivative helps to avoid non-zero fractional derivative 

of constant function, it is easier to use this definition to connect fractional calculus with classical calculus. 

In this paper, based on Jumarie’s modified R-L fractional calculus and a new multiplication of fractional analytic functions, 

we study a fractional definite integral formula. In addition, we give some examples to illustrate the applications of this 

formula. In fact, our formula is a generalization of ordinary calculus formula. 

II.   PRELIMINARIES 

Firstly, we introduce the fractional calculus used in this paper. 

Definition 2.1 ([20]): Let 0 < 𝛼 ≤ 1, and 𝑥0  be a real number. The Jumarie’s modified Riemann-Liouville (R-L) 𝛼-

fractional derivative is defined by 

                                                                         ( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(1−𝛼)

𝑑

𝑑𝑥
∫

𝑓(𝑡)−𝑓(𝑥0)

(𝑥−𝑡)𝛼 𝑑𝑡
𝑥

𝑥0
 ,                                                        (1) 

And the Jumarie type of Riemann-Liouville 𝛼-fractional integral is defined by 

                                                                           ( 𝐼𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(𝛼)
∫

𝑓(𝑡)

(𝑥−𝑡)1−𝛼 𝑑𝑡
𝑥

𝑥0
 ,                                                                  (2) 

where Γ( ) is the gamma function. 

Proposition 2.2 ([21]):  If  𝛼, 𝛽, 𝑥0, 𝐶  are real numbers and 𝛽 ≥ 𝛼 > 0, then 

                                                                           ( 𝐷𝑥0 𝑥
𝛼)[(𝑥 − 𝑥0)𝛽] =

Γ(𝛽+1)

Γ(𝛽−𝛼+1)
(𝑥 − 𝑥0)𝛽−𝛼,                                                    (3) 
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and 

                                                                                               ( 𝐷𝑥0 𝑥
𝛼)[𝐶] = 0.                                                                               (4) 

Definition 2.3 ([22]): If 𝑥, 𝑥0, and 𝑎𝑛 are real numbers for all 𝑛, 𝑥0 ∈ (𝑎, 𝑏), and 0 < 𝛼 ≤ 1. If the function 𝑓𝛼: [𝑎, 𝑏] → 𝑅 

can be expressed as an 𝛼-fractional power series, i.e., 𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0  on some open interval containing 

𝑥0, then we say that 𝑓𝛼(𝑥𝛼) is 𝛼-fractional analytic at 𝑥0. Furthermore, if 𝑓𝛼: [𝑎, 𝑏] → 𝑅 is continuous on closed interval 

[𝑎, 𝑏] and it is 𝛼-fractional analytic at every point in open interval (𝑎, 𝑏), then 𝑓𝛼 is called an 𝛼-fractional analytic function 

on [𝑎, 𝑏]. 

In the following, we introduce a new multiplication of fractional analytic functions. 

Definition 2.4 ([23]): If 0 < 𝛼 ≤ 1. Assume that 𝑓𝛼(𝑥𝛼) and 𝑔𝛼(𝑥𝛼) are two 𝛼-fractional power series at 𝑥 = 𝑥0, 

                                                                                    𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0 ,                                                     (5) 

                                                                                   𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0 .                                                     (6) 

Then  

                                                                    𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼)  

                                                               = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0 ⨂𝛼 ∑
𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0   

                                                               = ∑
1

Γ(𝑛𝛼+1)
(∑ (

𝑛
𝑚

) 𝑎𝑛−𝑚𝑏𝑚
𝑛
𝑚=0 )∞

𝑛=0 (𝑥 − 𝑥0)𝑛𝛼 .                                                (7) 

Equivalently, 

                                                         𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼) 

                                                    = ∑
𝑎𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛
∞
𝑛=0 ⨂𝛼 ∑

𝑏𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛
∞
𝑛=0   

                                                    = ∑
1

𝑛!
(∑ (

𝑛
𝑚

) 𝑎𝑛−𝑚𝑏𝑚
𝑛
𝑚=0 )∞

𝑛=0 (
1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛

 .                                              (8) 

Definition 2.5 ([24]): If 0 < 𝛼 ≤ 1, and 𝑓𝛼(𝑥𝛼),  𝑔𝛼(𝑥𝛼) are two 𝛼-fractional analytic functions defined on an interval 

containing 𝑥0 , 

                                             𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼 = ∑

𝑎𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛
∞
𝑛=0

∞
𝑛=0  ,                                 (9) 

                                            𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼 = ∑

𝑏𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛

.∞
𝑛=0

∞
𝑛=0                                  (10) 

The compositions of 𝑓𝛼(𝑥𝛼) and 𝑔𝛼(𝑥𝛼) are defined by 

                                                        (𝑓𝛼 ∘ 𝑔𝛼)(𝑥𝛼) = 𝑓𝛼(𝑔𝛼(𝑥𝛼)) = ∑
𝑎𝑛

𝑛!
(𝑔𝛼(𝑥𝛼))

⨂𝛼 𝑛∞
𝑛=0 ,                                               (11) 

and 

                                                        (𝑔𝛼 ∘ 𝑓𝛼)(𝑥𝛼) = 𝑔𝛼(𝑓𝛼(𝑥𝛼)) = ∑
𝑏𝑛

𝑛!
(𝑓𝛼(𝑥𝛼))

⨂𝛼 𝑛∞
𝑛=0 .                                                (12) 

Definition 2.6 ([25]): Let 0 < 𝛼 ≤ 1. If 𝑓𝛼(𝑥𝛼), 𝑔𝛼(𝑥𝛼) are two 𝛼-fractional analytic functions satisfies 

                                                                (𝑓𝛼 ∘ 𝑔𝛼)(𝑥𝛼) = (𝑔𝛼 ∘ 𝑓𝛼)(𝑥𝛼) =
1

Γ(𝛼+1)
𝑥𝛼.                                                          (13) 

Then 𝑓𝛼(𝑥𝛼), 𝑔𝛼(𝑥𝛼) are called inverse functions of each other. 

Definition 2.7 ([26]): If 0 < α ≤ 1, and 𝑥 is a real number. The 𝛼-fractional exponential function is defined by 
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                                                                    𝐸𝛼(𝑥𝛼) = ∑
𝑥𝑛𝛼

Γ(𝑛𝛼+1)
= ∑

1

𝑛!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑛

.∞
𝑛=0

∞
𝑛=0                                             (14) 

And the 𝛼-fractional logarithmic function 𝐿𝑛𝛼(𝑥𝛼) is the inverse function of 𝐸𝛼(𝑥𝛼). On the other hand, the 𝛼-fractional 

cosine and sine function are defined as follows: 

                                                         𝑐𝑜𝑠𝛼(𝑥𝛼) = ∑
(−1)𝑛𝑥2𝑛𝛼

Γ(2𝑛𝛼+1)
= ∑

(−1)𝑛

(2𝑛)!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2𝑛
∞
𝑛=0

∞
𝑛=0 ,                                        (15) 

and 

                                                   𝑠𝑖𝑛𝛼(𝑥𝛼) = ∑
(−1)𝑛𝑥(2𝑛+1)𝛼

Γ((2𝑛+1)𝛼+1)
= ∑

(−1)𝑛

(2𝑛+1)!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (2𝑛+1)
∞
𝑛=0

∞
𝑛=0  .                              (16) 

III.   RESULTS AND EXAMPLES 

In this section, we introduce a fractional definite integral formula and provide some examples to illustrate its applications. 

At first, we need a lemma. 

Lemma 3.1: If  0 < 𝛼 ≤ 1,(−1)𝛼 = −1, 𝑟 is a real number, and 𝑓𝛼(𝑥𝛼) is a 𝛼-fractional analytic function on [−𝑟, 𝑟], then 

                                                                      ( 𝐼−𝑟 𝑟
𝛼)[𝑓𝛼(𝑥𝛼)] = ( 𝐼0 𝑟

𝛼)[𝑓𝛼(𝑥𝛼) + 𝑓𝛼(−𝑥𝛼)].                                                (17) 

Proof  Since  ( 𝐼0 𝑟
𝛼)[𝑓𝛼(−𝑥𝛼)] 

                     = ( 𝐼0 𝑟
𝛼) [𝑓𝛼(−𝑥𝛼)⨂𝛼 ( 𝐷0 𝑟

𝛼) [
1

Γ(𝛼+1)
𝑥𝛼]]  

                    = −( 𝐼0 𝑟
𝛼) [𝑓𝛼(−𝑥𝛼)⨂𝛼 ( 𝐷0 𝑟

𝛼) [−
1

Γ(𝛼+1)
𝑥𝛼]]  

                    = ( 𝐼𝑟 0
𝛼) [𝑓𝛼(−𝑥𝛼)⨂𝛼 ( 𝐷0 𝑟

𝛼) [−
1

Γ(𝛼+1)
𝑥𝛼]]  

                   = ( 𝐼−𝑟 0
𝛼) [𝑓𝛼(𝑥𝛼)⨂𝛼 ( 𝐷0 𝑟

𝛼) [
1

Γ(𝛼+1)
𝑥𝛼]]  

                   = ( 𝐼−𝑟 0
𝛼)[𝑓𝛼(𝑥𝛼)] .                                                                                                                                         (18) 

It follows that 

                                                       ( 𝐼−𝑟 𝑟
𝛼)[𝑓𝛼(𝑥𝛼)]  

                                                   = ( 𝐼−𝑟 0
𝛼)[𝑓𝛼(𝑥𝛼)] + ( 𝐼0 𝑟

𝛼)[𝑓𝛼(𝑥𝛼)] 

                                                   = ( 𝐼0 𝑟
𝛼)[𝑓𝛼(−𝑥𝛼)] + ( 𝐼0 𝑟

𝛼)[𝑓𝛼(𝑥𝛼)] 

                                                   = ( 𝐼0 𝑟
𝛼)[𝑓𝛼(𝑥𝛼) + 𝑓𝛼(−𝑥𝛼)].                                                                       Q.e.d. 

Theorem 3.2: Let  0 < 𝛼 ≤ 1, (−1)𝛼 = −1,  𝑟 be a real number, and 𝑓𝛼(𝑥𝛼) be an even 𝛼-fractional analytic function 

on [−𝑟, 𝑟]. Then the 𝛼-fractional definite integral 

                                                          ( 𝐼−𝑟 𝑟
𝛼) [𝑓𝛼(𝑥𝛼)⨂𝛼 (1 +  𝐸𝛼(𝑥𝛼))

⨂𝛼 (−1)
] = ( 𝐼0 𝑟

𝛼)[𝑓𝛼(𝑥𝛼)].                                     (19) 

Proof   By Lemma 3.1 and 𝑓𝛼(𝑥𝛼) is an even 𝛼-fractional analytic function, we obtain 

                       ( 𝐼−𝑟 𝑟
𝛼) [𝑓𝛼(𝑥𝛼)⨂𝛼 (1 + 𝐸𝛼(𝑥𝛼))

⨂𝛼 (−1)
]  

                  = ( 𝐼0 𝑟
𝛼) [𝑓𝛼(𝑥𝛼)⨂𝛼 (1 + 𝐸𝛼(𝑥𝛼))

⨂𝛼 (−1)
+ 𝑓𝛼(−𝑥𝛼)⨂𝛼 (1 +  𝐸𝛼(−𝑥𝛼))

⨂𝛼 (−1)
]  

                  = ( 𝐼0 𝑟
𝛼) [𝑓𝛼(𝑥𝛼)⨂𝛼 (1 + 𝐸𝛼(𝑥𝛼))

⨂𝛼 (−1)
+ 𝑓𝛼(𝑥𝛼)⨂𝛼 (1 + 𝐸𝛼(−𝑥𝛼))

⨂𝛼 (−1)
]  
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                  = ( 𝐼0 𝑟
𝛼) [𝑓𝛼(𝑥𝛼)⨂𝛼 [(1 + 𝐸𝛼(𝑥𝛼))

⨂𝛼 (−1)
+ (1 + 𝐸𝛼(−𝑥𝛼))

⨂𝛼 (−1)
]]   

                  = ( 𝐼0 𝑟
𝛼) [𝑓𝛼(𝑥𝛼)⨂𝛼 [(1 + 𝐸𝛼(𝑥𝛼))

⨂𝛼 (−1)
+ 𝐸𝛼(𝑥𝛼)⨂𝛼 (1 + 𝐸𝛼(𝑥𝛼))

⨂𝛼 (−1)
]]  

                  = ( 𝐼0 𝑟
𝛼)[𝑓𝛼(𝑥𝛼)] .                                                                                            Q.e.d. 

Example 3.3: If  0 < 𝛼 ≤ 1, (−1)𝛼 = −1, then by Theorem 3.2, we have 

                          ( 𝐼−3 3
𝛼) [𝑐𝑜𝑠𝛼(𝑥𝛼)⨂𝛼 (1 + 𝐸𝛼(𝑥𝛼))

⨂𝛼 (−1)
] = ( 𝐼0 3

𝛼)[𝑐𝑜𝑠𝛼(𝑥𝛼)] = 𝑠𝑖𝑛𝛼 (
1

Γ(𝛼+1)
∙ 3𝛼).                      (20) 

And 

             ( 𝐼−2 2
𝛼) [(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 4

⨂𝛼 (1 +  𝐸𝛼(𝑥𝛼))
⨂𝛼 (−1)

] = ( 𝐼0 2
𝛼) [(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 4

] =
1

5
(

1

Γ(𝛼+1)
∙ 2𝛼)

⨂𝛼 5

 .           (21) 

IV.   CONCLUSION 

In this paper, based on Jumarie type of R-L fractional calculus and a new multiplication of fractional analytic functions, we 

obtain a fractional definite integral formula. On the other hand, we provide some examples to illustrate the applications of 

this formula. In fact, our formula is a generalization of classical calculus formula. In the future, we will continue to use 

Jumarie’s modified R-L fractional calculus and the new multiplication of fractional analytic functions to solve problems in 

fractional differential equations and applied mathematics. 
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